Dr. Andrei Gabrielov
Dr. Andrei Gabrielov

Professor

E-mail: agabriel@math.purdue.edu

Curriculum Vitae <pdf>

Associated Website(s): http://www.math.purdue.edu/~agabriel

 


Education

Ph.D.- Moscow State University

Research Interests

Modeling of seismicity, earthquake prediction, nonlinear science, theoretical mathematics.

Teaching Interests

EAS 591G Introduction to Continuum Mechanics

Professional Experience

  • 1995-..Professor, Departments of Mathematics and Earth and Atmospheric Sciences, Purdue University.

  • 1990-94 - Senior Research Associate, International Institute of Earthquake Prediction and Mathematical Geophysics, Russian Academy of Sciences, Moscow.

  • 1973-89 - Senior Research Associate, Institute of Physics of the Earth, Academy of Sciences of the USSR, Moscow.

Selected Publications

  • Zaliapin, I., Gabrielov, A., Keilis-Borok, V., Wong, H., Clustering analysis of seismicity and aftershock identification. Phys. Rev. Letters, v.101, 018501, 2008.

  • Eremenko, A., Gabrielov, A., and Shapiro, B., Zeros of eigenfunctions of some anharmonic oscillators. Ann. Inst. Fourier, v.58, 603-624, 2008.

  • Eremenko, A., Gabrielov, A., Shapiro, B., High energy eigenfunctions of one-dimensional Schrodinger operators with polynomial potentials. Comput. Methods and Func. Theory, v. 8, 513-529, 2008.

  • Gabrielov, A., Counter-examples to quantifier elimination for fewnomial and exponential expressions. Moscow Math. J., v. 7, 453-460, 2007.

  • Gabrielov, A., Novikov, D., Shapiro, B., Mystery of point charges. Proc. London Math. Soc., v. 95, 443-472, 2007; doi:10.1112/plms/pdm012.

  • A. Gabrielov, V.I. Keilis-Borok, V. Pinsky, O.M. Podvigina, A. Shapira, V.A. Zheligovsky Fluid migration and dynamics of a blocks-and-faults system. Tectonophysics, v.429, p.229-251, 2007.

  • A. Eremenko, A. Gabrielov, M. Shapiro. A. Vainshtein Rational functions and real Schubert calculus. Proceedings of the AMS, v.134, p.949-957, 2006.

  • P. Shebalin, V. Keilis-Borok, A. Gabrielov, I. Zaliapin and D. Turcotte Short-term earthquake prediction by reverse analysis of lithosphere dynamics, Tectonophysics, v.413, p.63-75, 2006.

  • Ilya Zaliapin, Henry Wong and Andrei Gabrielov Hierarchical aggregation in percolation model, Tectonophysics, v.413, p.93-107, 2006.

  • G. Yakovlev, W.I. Newman, D.L. Turcotte, A. Gabrielov An inverse cascade model for self-organized complexity and natural hazards. Geophys J. Intnl, v.163, p.433-442, 2005.

  • I. Zaliapin, H. Wong, A. Gabrielov Inverse cascade in percolation model: hierarchical description of time-dependent scaling. Phys. Rev. E, v.71, 066118, 2005.

  • A. Gabrielov, N. Vorobjov Complexity of computations with Pfaffian and Noetherian functions. In Normal Forms, Bifurcations and Finiteness Problems in Differential Equations , Kluwer 2004.

  • A. Gabrielov, N. Vorobjov, T. Zell Betti numbers of semialgebraic and sub-Pfaffian sets. J. London Math. Soc. , v.69, p.27-43, 2003.

  • A. Gabrielov, T. Zell On the number of connected components of the relative closure of a semi-Pfaffian family. In Algorithmic and Quantitative Real Algebraic Geometry , AMS 2003, p.65-75.

  • A. Gabrielov Relative closure and the complexity of Pfaffian elimination. In Discrete and Computational Geometry: The Goodman-Pollack Festschrift , Springer, 2003.

  • A. Eremenko, A. Gabrielov Pole placement by static output feedback for generic linear systems. SIAM J. on Control and Optimization , v.41 p.303-312, 2002.

  • A. Eremenko, A. Gabrielov Degrees of real Wronski maps. Discrete and Computational Geometry , v.28, p.331-347, 2002.

  • A. Eremenko, A. Gabrielov Counterexamples to pole placement by static output feedback. Linear Algebra and its Applications , v.351-352, p.211-218, 2002.

  • A. Eremenko, A. Gabrielov Rational functions with real critical points and the B. and M. Shapiro conjecture in real enumerative geometry. Annals of Mathematics , v.155, p.105-129, 2002.

  • A. Eremenko, A. Gabrielov The Wronski map and Grassmannians of real codimension 2 subspaces. Computational Methods and Function Theory , v.1, p.1-25, 2001.

  • A. Gabrielov, N. Vorobjov Complexity of cylindrical decompositions of sub-Pfaffian sets. J. Pure and Applied Algebra , v.164, p.179-197, 2001.

 



© 2012 Purdue University
An equal access/equal opportunity university
Copyright Complaints

Department of Earth, Atmospheric, and Planetary Sciences, Purdue University
550 Stadium Mall Drive, West Lafayette, IN 47907 USA     Phone: (765) 494-3258 - Fax: (765) 496-1210
If you have trouble accessing this page because of a disability, please contact webmaster at: webmaster@science.purdue.edu