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ABSTRACT: The authors use a spatially explicit parameterization method
and the Terrestrial Ecosystem Model (TEM) to quantify the carbon dynamics of
forest ecosystems in the conterminous United States. Six key parameters that
govern the rates of carbon and nitrogen dynamics in TEM are selected for
calibration. Spatially explicit data for carbon and nitrogen pools and fluxes are
used to calibrate the six key parameters to more adequately account for the
spatial heterogeneity of ecosystems in estimating regional carbon dynamics.
The authors find that a spatially explicit parameterization results in vastly
different carbon exchange rates relative to a parameterization conducted for
representative ecosystem sites. The new parameterization method estimates that
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the net ecosystem production (NEP), the annual gross primary production (GPP),
and the net primary production (NPP) of the regional forest ecosystems are 61%
(0.02 Pg C; 1 Pg 5 1015 g) higher and 2% (0.11 Pg C) and 19% (0.45 Pg C)
lower, respectively, than the values obtained using the traditional parameteriza-
tion method for the period 1948–2000. The estimated vegetation carbon and soil
organic carbon pool sizes are 51% (18.73 Pg C) lower and 29% (7.40 Pg C)
higher. This study suggests that, to more adequately quantify regional carbon
dynamics, spatial data for carbon and nitrogen pools and fluxes should be
developed and used with the spatially explicit parameterization method.

KEYWORDS: Carbon dynamics; Parameterization; Spatial; United States;
Forest; Terrestrial Ecosystem Model

1. Introduction
The global carbon cycle plays an important role in affecting the climate system

(Cramer et al. 1999). Quantifying the dynamics of carbon exchange between the
biosphere and the atmosphere is important in the understanding of global climate
change. To date, many process-based biogeochemical models have been used to
quantify carbon dynamics (Bonan 1995; McGuire et al. 1992; Potter et al. 1993;
Running and Coughlan 1988; Zhuang et al. 2003). These models incorporate the
biological, physical, and chemical processes of ecosystems and use mathematical
equations to represent these processes. These mathematical equations are usually
parameterized for representative vegetation types and then extrapolated to regional
scales. For example, the Terrestrial Ecosystem Model (TEM) has been widely used
to study ecosystem carbon and nitrogen dynamics at different scales since the early
1990s (Kicklighter et al. 1999; McGuire et al. 1992; McGuire et al. 2001; Melillo
et al. 1993; Raich et al. 1991; Zhuang et al. 2002; Zhuang et al. 2003; Zhuang et al.
2006; Tang and Zhuang 2008; Tang and Zhuang 2009). In TEM, a number of
parameters are used to describe and govern the physical processes of carbon, ni-
trogen, water, and thermal dynamics in the represented ecosystems. The parame-
ters related to hydrologic and thermal processes are mostly determined by literature
review or independent estimation using published data; however, some TEM-
specific internal parameters that control the rates of carbon and nitrogen processes
cannot be determined directly from the experimental measurement data but rather
have to be determined through model parameterization. Traditionally, the param-
eterization of TEM is conducted with field data for typical ecosystem types.
However, especially for the forest ecosystem, this treatment does not address the
uncertainty due to the spatial heterogeneity of a region, which arises as a result of
variation in stand age, species, and geographic location (Bondeau et al. 1999;
Ruimy et al. 1999; Schloss et al. 1999). For instance, the aboveground productivity
of forests has been reported to decrease with forest age, which may be a result of
the altered carbon balance between photosynthesis and ecosystem respiration, as
well as the decreased soil nutrient availability (Gower et al. 1996; Pregitzer and
Euskirchen 2004; Pietsch and Hasenauer 2006). Leaf aging can also affect plant
photosynthetic capacity (Kitajima et al. 1997). Bresson et al. (Bresson et al. 2009)
presented evidence for altitudinal increases in photosynthetic capacity using
gas exchange measurements. Turner et al. (Turner et al. 1995) reported that
forests with different age classes, geographic locations, and species types had
different rates of carbon fluxes and pools in the conterminous United States.
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Because the rate-controlling parameters in TEM are strongly related to the rates
of processes, the above evidence suggests that using a single set of parameters
calibrated at representative sites for a specific broad vegetation type, but ne-
glecting the spatial heterogeneity of the ecosystems, can result in significant
uncertainty for a regional quantification.

Ideally, spatially explicit parameters for TEM are needed for regional simula-
tions. With more available data reporting vegetation and soil carbon and nitrogen
pools (Van Deusen and Heath 2010a; Van Deusen and Heath 2010b) and flux (e.g.
Zhao et al. 2005), parameterization of TEM for all grid cells at a regional scale is
possible. Here, we conduct a study to obtain such data and to evaluate the carbon
dynamics of forest ecosystems in the conterminous United States for the period
1948–2000. We first develop spatial distributions for the key parameters of the
model, TEM. Second, we evaluate the differences in carbon fluxes and pool sizes
between those determined using a traditional parameterization method and those
determined using the spatially explicit parameterization method. TEM is calibrated
using the required spatial datasets for the forests of the conterminous United States
in order to obtain the spatially explicit parameters. TEM simulations are conducted
for the period 1948–2000 with both the spatially explicit parameters and the pa-
rameters obtained using the traditional method.

2. Methods

2.1. Terrestrial Ecosystem Model and its calibration

The TEM is a well-documented, process-based ecosystem model that describes
the carbon and nitrogen dynamics of plants and soils in terrestrial ecosystems
(McGuire et al. 1992; McGuire et al. 2001; Melillo et al. 1993; Raich et al. 1991;
Zhuang et al. 2001; Zhuang et al. 2002; Zhuang et al. 2004; Zhuang et al. 2003).
TEM uses spatially referenced information on climate, elevation, soils, vegetation,
and water availability as well as soil- and vegetation-specific parameters to make
monthly estimates of important carbon and nitrogen fluxes and pool sizes for ter-
restrial ecosystems.

In TEM, specific parameters control the magnitude of carbon and nitrogen fluxes
(Table 1). The TEM traditional parameterization method uses carbon and nitrogen
pools and annual fluxes from intensively studied sites (McGuire et al. 1992) to
estimate the values for each of the rate-controlling parameters. The ecosystem data
needed for a site-level calibration of TEM include 1) vegetation and soil organic
carbon pool sizes (VEGC and SOLC); 2) vegetation and soil nitrogen carbon pool
sizes (VEGN and SOLN); 3) gross primary production (GPP) and net primary
production (NPP); 4) NPP without N limitation (NPPsat); 5) inorganic N in soil
(Nav); and 6) N uptake of vegetation (NUPTAKE). Parameters associated with
carbon and nitrogen fluxes in TEM are sequentially adjusted until all carbon and
nitrogen pools, as well as annual GPP and NPP, match the observations. Here, we
focus on six key parameters that are identified from our previous sensitivity study
(Tang and Zhuang 2009). These parameters are Cmax, representing the maximum
photosynthesis rate; Kr and Kd, describing the rate of autotrophic and heterotrophic
respiration, respectively; CFALL, indicating the carbon litterfall rate; and Nmax and
Nup, which are related to the N feedback for C and N uptake in vegetation. The
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definition of these parameters and their associated processes are documented in
Tables 1 and 2.

During model calibrations, the ecosystem data from each site are used to ini-
tialize the model, and the model is driven with climate data from the same location.
Parameters are determined during the TEM calibration by repetitively adjusting
parameters, running the model, and comparing the model estimates and observa-
tions. This process is completed according to the following strategy: first, we run
the C cycle uncoupled from the N cycle in TEM in order to calculate productivities
as if N were not limiting. Therefore, the parameters directly associated with cal-
culating carbon fluxes and pool sizes can be determined in this step. GPP, NPP, and
the maximum response of NPP to N fertilization (NPPsat) are used to constrain the
maximum rate of C assimilation (Cmax). The parameter Kr is determined by the rate
of autotrophic respiration (RA), which is the difference of GPP and NPP. Here, Kd

and CFALL are determined by SOLC and by the balance between VEGC and
SOLC. Second, we run TEM, this time coupled with the N cycle to activate the
C–N interactions and determine N-related parameters, which control N cycling
rates and feedbacks on C cycle. The available inorganic N in soil and detritus (Nav)
constrains the value of Nup; the annual NUPTAKE and NPP determine Nmax.

Table 1. Vegetation-specific parameters used in TEM. Here, Cmax, Kr, Kd, CFALL,
Nmax, and Nup are selected as the key parameters in the spatially explicit param-
eterization.

Acronym Definition Unit

Parameters by calibration in our study
Cmax Maximum rate of photosynthesis g m22 month21

Kr Plant respiration rate at 108C mg m22 month21

Kd Heterotrophic respiration rate at 108C mg m22 month21

CFALL Proportion of vegetation carbon loss as litterfall monthly g g21 month21

Nmax Maximum rate of N uptake by vegetation mg m22 month21

Nup Ratio between N immobilized and C respired by heterotrophs mg g21

Parameters by estimation from literature review or independent analysis in our study
kc Half saturation constant for CO2–C uptake by plants mL L21

ki Half saturation constant for PAR use by plants J cm22 day21

Tmin Minimum temperature for GPP 8C
Topt Optimum temperature for GPP 8C
Tmax Maximum temperature for GPP 8C
NFALL Proportion of vegetation nitrogen loss as litterfall monthly g g21 month21

VEGC2N Mean C:N ratio of vegetation g g21

RAQ10A0 Leading coefficient of the Q10 model for plant respiration None
RAQ10A1 First-order coefficient of the Q10 model for plant respiration 8C21

RAQ10A2 Second-order coefficient of the Q10 model for plant respiration 8C22

RAQ10A3 Third-order coefficient of the Q10 model for plant respiration 8C23

kn1 Half saturation constant for N uptake by plants g m23

kn2 Half saturation constant for N uptake by heterotrophic organisms g m23

MINLEAF Minimum photosynthetic capacity of vegetation None
ALEAF Coefficient to model the relative photosynthetic capacity of vegetation None
BLEAF Coefficient to model the relative photosynthetic capacity of vegetation None
CLEAF Coefficient to model the relative photosynthetic capacity of vegetation None
MOISTOPT Optimum soil moisture content for heterotrophic respiration %
RHQ10 Change in heterotrophic respiration due to 108C temperature increase None
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The more specific steps of the calibration procedures are 1) set up the initial values
of parameters and pool sizes (use the values from previous studies); 2) turn off
nitrogen feedback effects; 3) manually adjust Cmax and run TEM until annual GPP
matches the observed value, then manually adjust Kr and run TEM until annual
NPP matches the observed value; 4) manually adjust Kd and run TEM until SOLC
matches the observed value, then adjust CFALL and run TEM until VEGC matches
the observed value; 5) because adjusting CFALL can change both VEGC and
SOLC, do iterations of step 4 until SOLC and VEGC both match their observed
values; 6) manually adjust Cmax and run the model until annual NPP matches
NPPsat; 7) turn on nitrogen feedback effects; 8) manually adjust Nup until Nav is
equal to its observed value, and adjust Nmax until NPP and NUPTAKE are close to
their observations; and 9) put the values of carbon and nitrogen pool sizes, as well
as the parameter values, into the parameter table for model extrapolation. In each
step, we control the differences between model estimates and observations within
1% error tolerance. These calibrated parameters are then used for extrapolation
simulations. More details of the calibration and extrapolation methods can be
found in Raich et al. (Raich et al. 1991) and McGuire et al. (McGuire et al. 1992).

2.2. Spatially explicit calibration for TEM

To date, the parameterization of TEM has been conducted at the site level of
major representative ecosystems in order to conduct regional simulations. The
parameterization and model were then extrapolated from these site-level obser-
vations onto a regional scale. To have a spatially explicit calibration for a region
with TEM, here we develop an automatic calibration program for TEM. This
program follows the traditional procedures of calibrating TEM but automatically
adjusts the calibrating parameters to fit the model estimates with the observations.
The program is designed based on the binary-search algorithm (Knuth 1997, 409–
426) to accelerate the efficiency of finding the appropriate parameters. The pro-
gram is used to parameterize TEM for each forest ecosystems grid cell in the
conterminous United States at a 0.58 3 0.58 resolution with available satellite
products and forest and soil inventory data. The model and parameters are then
extrapolated to the regional scale in order to examine how this forest carbon
quantification differs from that determined using the traditional parameterization
method. To obtain the spatially explicit parameters, we develop the spatial data of
vegetation carbon pool sizes using the Carbon On Line Estimator (COLE) de-
veloped by the U.S. Department of Agriculture (USDA) Forest Service (Figure 1).
COLE data are based on USDA Forest Service Forest Inventory and Analysis and
Resource Planning Assessment data and enhanced by other ecological data. COLE
provides county-level carbon storage for the forested regions of the United States
using weighted analysis methods (Van Deusen and Heath 2010a; Deusen and Heath
2010b). We first obtain the county-level mean live tree carbon storage (VEGC) and
soil organic carbon storage (SOLC) data for the conterminous United States. We
then resample them into 0.58 3 0.58 grid cells using the nearest-neighborhood
method. Finally, we extract forest grid cells from a global vegetation map (Melillo
et al. 1993). The nitrogen pool sizes (VEGN and SOLN) are then estimated by the
carbon pool sizes using the C:N ratios (VEGcn and SOLcn) used in previous ver-
sions of TEM,
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VEGN 5 VEGC/VEGcn and (1)

SOLN 5 SOLC/SOLcn. (2)

Here, the VEGcn and SOLcn are long-term average C:N ratios. They provide an
estimation of the nitrogen pool sizes for the spatially explicit parameterization and
additionally provide the initial values for the C:N ratios during the parameteriza-
tion procedure; these ratios will be updated for each time step for each grid cell
(McGuire et al. 1992). Values of VEGcn and SOLcn for each ecosystem type are
adapted from Zhuang et al. (Zhuang et al. 2003). The available nitrogen (Nav) for
each ecosystem type is set as a fixed value as follows (McGuire et al. 1992): 0.5,
1.0, 2.0, and 1.5 g N m22 for boreal forest, temperate coniferous forest, temperate
deciduous forest, and temperate mixed forest, respectively. Additionally, in order
to test the uncertainty of the model as a result of uncertain carbon pool sizes in
calibration, we use the county-level standard error for carbon pool sizes from

Figure 1. Spatially explicit mean carbon pool sizes and their standard errors used for
calibration. Units are kg C m22 and g C m22 for the mean pool sizes and
standard errors, respectively. (a) VEGC and VEGC std and (b) SOLC and
SOLC std.
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COLE to calibrate TEM. We resample and extract the data for forest ecosystems in
the conterminous United States.

The GPP and NPP data for calibration are obtained from the Moderate Res-
olution Imaging Spectroradiometer (MODIS) products (Figure 2). We obtain
MOD17A3_C5.1 (yearly GPP and NPP) from the Numerical Terradynamic Sim-
ulation Group (NTSG) of the University of Montana and then calculate the annual
mean within the available years from 2000 to 2007. The 1 km 3 1 km pixels are
then resampled into 0.58 3 0.58 grid cells to match the spatial resolution of TEM.

The spatial values of NPPsat are, however, unavailable, and we therefore esti-
mate them using the following empirical relationship, which is suggested by
(McGuire et al. 1992):

NPPsat 5 1.25NPP. (3)

NUPTAKE is calculated as

NUPTAKE 5 NPP/VEGcn. (4)

The meteorology data used for calibration include the monthly precipitation, air
temperature, and cloudiness fraction for the period 1948–2000 (Kistler et al. 2001).
The 53-yr average of the meteorology data for each grid cell is used for the spa-
tially explicit parameterization.

The Spearman’s rank correlation coefficient r is employed to test the spatial
correlation between the calibrated parameter values and the ecosystem carbon and
nitrogen pool and flux data used for calibration. The r indicates the direction of
association between the compared variables. A positive r indicates the same di-
rection as the compared variables, whereas a negative r indicates the opposite
direction. The higher absolute value of r suggests a stronger correlation of the
monotonic relation.

2.3. Regional simulation

To quantify carbon fluxes over the forested area of the conterminous United
States and compare the differences between two simulations, one using the spatially

Figure 2. Annual-mean carbon fluxes for (a) GPP and (b) NPP used for calibration.
Units are g C m22 yr21.
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explicit parameterization method and the other the traditional method, we apply
TEM to the region at a 0.58 3 0.58 spatial resolution for the period 1948–2000, for
a total of 1370 grid cells (Figure 3). The spatially explicit soil texture data de-
scribing the percentage of sand, silt, and clay in the soil are originally from the
published soil map of Food and Agriculture Organization of the United Nations
(FAO 2011); Other auxiliary data, such as elevation, are from our previous studies
(Zhuang et al. 2003).The annual atmospheric CO2 concentration data from 1948 to
2000 are also based on data from our previous studies (Zhuang et al. 2003). We first
run TEM to equilibrium and then spin up the model for 1000 years to account for
the influence of climate interannual variability on the initial conditions of the
ecosystems. After that, we run the model with transient climate and annual at-
mospheric CO2 concentrations from 1948 to 2000.

The COLE data are supposed to be unbiased, but statistical standard errors exist
in association with the mean values (Van Deusen and Heath 2010a; Van Deusen
and Heath 2010b). To quantify the possible uncertainty induced by the statistical
errors, we conduct ensemble calibrations using the mean carbon pool sizes and
their corresponding standard errors. Because we use two carbon pools (the vege-
tation carbon and soil organic carbon), besides the calibration using mean values
of VEGC and SOLC from COLE, four additional sets of calibrations are conducted
based on the combinations of mean values (e.g., VEGCmean and SOLCmean) and
standard errors (e.g., VEGCstd and SOLCstd) of VEGC and SOLC, which are
VEGCmean 1 VEGCstd and SOLCmean 1 SOLCstd, VEGCmean 1 VEGCstd and
SOLCmean 2 SOLCstd, VEGCmean 2 VEGCstd and SOLCmean 1 SOLCstd, and

Figure 3. Potential vegetation coverage of the forest regions in the conterminous
United States at a resolution of 0.58 3 0.58 (longitude 3 latitude).
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VEGCmean 2 VEGCstd and SOLCmean 2 SOLCstd. We then extrapolate the five
sets of spatially explicit parameters to the region. Standard errors for these five sets
of calibrated parameters and simulation results are used for uncertainty analysis.

3. Results

3.1. Spatial patterns of the calibrated key parameters

Parameter values vary significantly in the region (Figure 4). The highest Cmax

values are mainly observed along the Appalachian Mountains, the coastal plain, the
Ozark plateaus, and the Ouachita Mountains, as well as the Pacific coastal regions.

Figure 4. Spatial patterns of the calibrated key parameters: (a) Cmax; (b) Kr; (c) Kd; (d)
CFALL; (e) Nmax; and (f) Nup.
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The spatial pattern of Kr is similar to that of Cmax, except for the low values in the
Pacific coastal region and the high values in northern Michigan. High Kd, however,
is mostly distributed in the Appalachian Mountains area, the Rocky Mountains
area, and the California Coast Range area. High CFALL is mostly located in the
eastern United States and especially along the Gulf Coast and the northern central
plain areas. The N-related parameters have similar spatial patterns: both of which
are high in the coastal plains, the northern central lowlands, the Rocky Mountains,
and the Pacific coastal regions and low in the east-central United States.

The calibrated parameters are spatially associated with the input variables (Table
3). The Cmax is strongly and positively correlated with the GPP and NPP because it
directly affects the carbon assimilation rate; the Kr is positively related to the rate of
plant maintenance respiration, a portion of GPP in TEM; thus, it is significantly and
positively correlated to the GPP. The Kr also has notably negative correlations with
the VEGC in our simulation because respiration directly reduces the vegetation
carbon pool size. For a similar reason, CFALL is positively correlated to SOLC but
varies inversely with VEGC, as we would expect. The Kd indicates the rate of
heterotrophic respiration, which can reduce the SOLC size. Our results show Kd

varies inversely compared to the SOLC, as expected. The Kd is also found to be
negatively related to air temperature and precipitation, but most likely Kd has the
same direction of spatial variation as VEGC. The spatial variations of the N-related
parameters (Nmax and Nup) are positively correlated with the variations in NPP.

3.2. Simulated carbon dynamics with the traditional and spatially
explicit parameterization methods

The traditional parameterization estimates that the region was a C sink of
0.03 6 0.14 Pg C yr21 with an annual GPP of 4.55 6 0.24 Pg C yr21 and NPP of
2.37 6 0.19 Pg C yr21 for the period from 1948 to 2000 over the total vegetated
area of 3.26 3 106 km2 (Table 4). The RA and RH for this period are 2.17 6 0.06
and 2.34 6 0.09 Pg C yr21, respectively. During this period, climate factors
fluctuated frequently and resulted in a significant interannual variability in these
carbon fluxes (Figure 5).

Overall, TEM with the spatial parameterization provides similar temporal trends
for C dynamics, but with different magnitudes in comparison with the estimates
from the traditional parameterization method (Figure 5). With the spatially explicit

Table 3. Spatial correlations between the spatially explicitly calibrated parameters
and the variables used for calibration. Here, T stands for air temperature and P stands
for precipitation.

GPP NPP VEGC SOLC T P

Cmax 0.46* 0.35* 0.02 0.004 0.16* 0.04
Kr 0.39* 0.002 20.43* 20.04 0.16* 0.13*
Kd 20.07* 0.06* 0.24* 20.39* 20.31* 20.29*
CFALL 0.21* 0.32* 20.47* 0.21* 0.15* 0.15*
Nmax 20.11* 0.01 20.19* 0.24* 20.25* 20.35*
Nup 20.31* 20.24* 20.39* 0.14* 20.39* 20.58*

* The p value for testing the hypothesis of no correlation against the alternative that there is a nonzero
correlation is less than 0.05.
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parameterization, TEM estimates that the regional GPP was 4.46 6 0.28 Pg C yr21

for the period 1948–2000, which is slightly lower than the estimates from the
traditional parameterization method. The NPP and net ecosystem production (NEP)
are, however, estimated to be 1.92 6 0.19 and 0.05 6 0.16 Pg C yr21 for the period
from 1948 to 2000, which is 19.1% lower and 61% higher than the estimates from
the traditional parameterization (Table 4).

The average spatial patterns of the simulated NEP by the spatially explicitly
and traditionally parameterized TEM are different over the period 1948–2000
(Figures 6a,b). With the traditional parameterization, TEM-estimated carbon sinks
are generally larger in the Southeast United States but smaller in the Pacific
Northwest area and the central lowland area in northern Minnesota and Michigan,
compared to the estimates by the spatially explicitly parameterized TEM. The
carbon-source areas are also estimated to be larger in Minnesota by the tradi-
tionally parameterized TEM.

Spatial patterns and magnitudes for vegetation and soil organic carbon storage
are very different with the two methods of parameterization. Kolmogorov–Smirnov
tests (Corder and Foreman 2009) on the estimated carbon pool datasets from the
two methods confirm that they have significant differences, rejecting the null hy-
pothesis at the 5% significance level, with p , 10210 for soil organic carbon pools
and p , 102100 for vegetation carbon pools during the study period.

A single set of parameters for each ecosystem type (the traditional parameter-
ization method) produces more continuously homogeneous spatial patterns for the
carbon pools, whereas the spatially explicit method generates more discrete spatial
distributions. Both the vegetation carbon and soil organic carbon pools (Figures
6d,f) have spatial patterns similar to the initial carbon pools used for the spatially
explicit parameterization. For example, the traditional method estimates the de-
ciduous forests in the middle United States stored more vegetation carbon than the
other areas, whereas the results from the spatial parameterization indicate the
highest vegetation carbon storage was located in the Pacific Northwest and along
the Appalachian Mountains (Figure 6c). The spatial features of the soil organic
carbon estimated by the two parameterization methods are more similar to each
other when comparing the differences between the vegetation carbon pools. Both
predict a large amount of soil organic carbon stored in the northeastern, southeastern,

Table 4. TEM-estimated average carbon fluxes and pool sizes over the period of
1948–2000 with the traditional and spatially explicit parameterization methods. Here,
t stands for estimations by TEM with the traditional parameterization method; p stands
for estimations by TEM with the spatially explicit parameterization method; and
%diff 5 (p 2 t )/t 3 100% indicates the difference between the two estimations.
Units are Pg C yr21.

t p %diff

GPP 4.55 6 0.24 4.46 6 0.28 22
NPP 2.37 6 0.19 1.92 6 0.19 219
NEP 0.03 6 0.14 0.05 6 0.16 61
RA 2.17 6 0.06 2.54 6 0.11 17
RH 2.34 6 0.09 1.87 6 0.09 220
VEGC 56.31 6 0.68 27.58 6 0.79 251
SOC 25.81 6 0.42 33.21 6 0.25 29
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Figure 5. Annual carbon fluxes and carbon pool sizes from 1948 to 2000 of the forest
ecosystems of the conterminous United States. Variations of (a) GPP, (b)
NPP, (c) NEP, (d) RA, (e) RH, (f) VEGC, and (g) SOLC. The variable C in the
legend stands for each carbon flux and pool size. The subscript p stands for
using the spatial calibration method, whereas t stands for the traditional
method. Here, std indicates the standard deviation of the ensemble sim-
ulation results. Note that the std is too small to be seen in (a)–(e).
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and midwestern forests, although the spatial parameterization method provides
higher magnitudes (Figure 6e).

4. Discussion
With the developed spatially explicit parameterization method and simulations,

we must further consider four issues. One is the verification of our results for

Figure 6. Spatial patterns of NEP, VEGC, and SOLC estimated using TEM with the
traditional and spatially explicit parameterization methods during the
period of 1948–2000. (a) NEP estimated with traditional parameterization,
(b) NEP estimated with spatially explicit parameterization, (c) VEGC esti-
mated with traditional parameterization, (d) VEGC estimated with spatially
explicit parameterization, (e) SOLC estimated with traditional parameteri-
zation, and (f) SOLC estimated with spatially explicit parameterization.
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carbon dynamics with the study region. A second focuses on investigating the role
of carbon pools and fluxes in quantifying carbon dynamics. A third issue is the role
of spatially explicit parameterization in regional carbon quantification. Finally,
we consider the possible uncertainties associated with the use of the spatially
explicit parameterization method and also future work.

4.1. Verification of the estimated carbon dynamics

There are various independently estimated carbon dynamics for the forests of the
conterminous United States. Houghton et al. (Houghton et al. 1999) estimated the
carbon sink in the forest of the conterminous United States to be 0.06 Pg C yr21 in
the 1980s (Houghton et al. 1999; Pacala et al. 2001); Birdsey and Heath (Birdsey
and Heath 1995) reported the carbon sink of the forested regions to be about
0.10 Pg C yr21 for the same period (Birdsey and Heath 1995) without considering
land-use changes. However, a later study demonstrated the land-use changes have
significant effects on the carbon budgets (Birdsey et al. 2006). Pacala et al. (Pacala
et al. 2001) estimated the sink to be 0.11–0.15 Pg C yr21 for the 1980s (Pacala et al.
2001). The historical simulated results of our study suggested that the carbon sink
is 0.07 Pg C yr21 for the 1980s with the spatially explicit parameterization method,
which is closer to these independent estimations, compared with the 0.04 Pg C yr21

estimated by the traditional parameterization method. Zhang et al. (Zhang et al.
2010) showed that the annual NPP of the forests in the conterminous United States
increased from 1.5 Pg C yr21 in the early twentieth century to 1.9 Pg C yr21 in the
early twenty-first century (Zhang et al. 2010). NPP estimated by the spatially
explicitly parameterized TEM is about 1.92 Pg C yr21 in the period of 1948–2000,
which is lower than the traditional-method-estimated value of 2.37 Pg C yr21 but
closer to Zhang et al.’s (Zhang et al. 2010) result. The MODIS products start in the
year 2000 and, for the period of 2000–07, the MODIS products estimate the av-
erage annual GPP and NPP of the study region to be 3.98 and 1.94 Pg C yr21,
respectively, which is closer to our estimates of the twentieth century with the
spatially explicit parameterization method. Existing soil organic carbon is esti-
mated to be about 25 Pg C (U.S. Department of Agriculture 2011), which is in
between the estimations from the two methods used in our study (Table 4); how-
ever, our estimations of vegetation carbon (Table 4) with the spatially explicit
parameterization is much closer to 24 Pg C (Sundquist et al. 2009). In summary, the
spatially explicit parameterized TEM results presented here are broadly consistent
with a wide range of previous studies on carbon dynamics in the same region.

4.2. The role of carbon pool sizes and carbon fluxes
in parameterization

Estimates of the amount of carbon storage are important because they are a
baseline for assessing potential future carbon storage gains or losses (Sundquist
et al. 2009) and affect the net exchange of CO2 between forests and the atmosphere
(Pregitzer and Euskirchen 2004). Conceptually, the vegetation carbon pool size
determines the vegetation biomass and the leaf biomass and therefore influences
the photosynthesis rate as modeled in the GPP formulation in TEM (Table 2;
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Zhuang et al. 2002) and the autotrophic respiration rate; the soil organic carbon pool
size is also significant in the determination of heterotrophic respiration (Table 2).
The nitrogen pool sizes (derived from carbon pool sizes in our study) concern the
carbon–nitrogen interaction processes and therefore also play an important role in
carbon dynamics. The carbon fluxes (annual GPP and NPP) used for parameteri-
zation are also of significant importance because they directly reflect the features of
the ecosystem carbon assimilation rate and the autotrophic respiration rate.
Technically, the related parameters are sequentially adjusted during the parame-
terization process in order to reach the observed carbon pool sizes and fluxes. The
spatially explicit carbon pools and fluxes affect the parameter values and therefore
affect spatial patterns and the magnitudes of the simulated carbon dynamics at the
regional scale. As shown in our results, TEM, using the traditional parameteriza-
tion, will predict much higher vegetation carbon storage in comparison with other
estimates.

4.3. Importance of using spatially explicit parameters

Quantification of ecosystem carbon dynamics with TEM is influenced by pa-
rameters. Traditionally, these parameters are determined by calibrating the model
at a number of representative sites. When these parameters are applied to the
region, the regional grid cells are therefore assumed to have the same character-
istics as the calibration sites. However, ecosystem processes are related not only to
ecosystem type but also to various environmental and ecological factors (e.g., stand
age, species, and geographic location) (Ahl et al. 2004; Monsi and Saeki 2005; Still
et al. 2004; Turner et al. 1995). Therefore, because the model with the traditional
parameterization is not able to account for the spatially heterogeneous features of
the ecosystems, its estimation may be biased. The parameters for each grid cell of a
region are therefore needed to better quantify the regional carbon dynamics.

To date, several studies revealed the importance of spatial parameters in model
simulations. For example, De Kauwe et al. (De Kauwe et al. 2008) assimilated the
spatial leaf area index (LAI) from MODIS over a coniferous forest site in Oregon
into an ecosystem model with an ensemble Kalman filter, showing that assimilating
the LAI data improved the NEP estimates. Studies on satellite-based terrestrial
production models also suggest that the key parameter, light-use efficiency at the
canopy level, varies spatially with different vegetation species, stand age, soil
fertility, and climate (McCallum et al. 2009). In contrast, Davi et al. (Davi et al.
2006) tested the sensitivity of a combination of six key parameters: the above-
ground wood biomass (B), the soil water reserve (SWR), the canopy clumping
factor (CF), the LAI (L), the leaf mass per area of sunlit leaves (Msun), and the leaf
nitrogen content (N) with the process-based model CASTANEA. The study sug-
gested a slight difference in the estimation of carbon fluxes and almost no differ-
ence in the estimation of water fluxes between using spatially explicit parameters
and aggregated parameters from a small study region. Our results, however, sug-
gest there are significantly different magnitudes and spatial patterns (e.g., Figure 6
and Table 4) for carbon dynamics in the forest ecosystems of the United States, for
both the past and future, between the estimations determined using the spatially
explicit and the traditional parameterization methods. Because we use the same
climate forcing data and spatial reference data for the model simulations for the
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two parameterization methods, the reason for the differences is most likely due to
the use of the spatially explicit parameters versus the traditionally calibrated pa-
rameters. This suggests that the spatially explicit parameters are important to better
quantifying regional ecosystem carbon dynamics.

4.4. Possible uncertainties and the future work

There are various possible uncertainty sources in our estimations of carbon
dynamics with the spatially explicitly parameterized TEM. First, the uncertainty of
the carbon pool size data used for the spatially explicit parameterization may
contribute to the total uncertainty. The COLE data are based on forest inventory
data and mapped with weighted analysis and have been suggested as an unbiased
estimator of carbon mapping. The COLE-estimated carbon data are validated, but
with statistical errors. The ensemble parameterizations are conducted to test how
the errors of the carbon pool sizes affect the results. As shown in Figure 5, the
standard deviation of the results of the ensemble simulations are within very small
ranges, indicating that the carbon pool size error slightly alters the model estimates
of carbon fluxes but notably influence the estimates of vegetation and soil organic
carbon pool sizes (Figure 5). The uncertainty of the vegetation and soil organic
carbon pool size estimation induced by the error in the carbon pool size in cali-
bration is as low as about 3%–5% of the mean estimation. We also use two other
types of resampling methods (bilinear and cubic) to assess the uncertainties in-
troduced by the methods used to resample the spatially explicit carbon pools. We
find the resampled results by the two methods to be similar to the results produced
by the nearest-neighborhood method we used in this study. The discrepancies in
both methods are in the 65% tolerance range of our parameterization procedure,
and therefore the uncertainties may not be obvious. The method of estimating
NPPsat [Equation (3)] may also contribute to the uncertainty of the model cali-
bration and therefore estimations of carbon dynamics. During the processes of
calibration, over- or underestimation of NPPsat will lead to higher or lower values
of Cmax (see the description of calibration procedures); the N limitation effect is
therefore over- or underestimated in association with higher or lower Nmax values.
LeBauer and Treseder (LeBauer and Treseder 2008) reported the ratio of estimated
aboveground net primary productivity in the fertilized plots to the control plots for
all biome types to be 1.22–1.35, and for temperature forests the ratio was 1.11–
1.28, with a meta analysis of 126 nitrogen addition experiments evaluating the
N limitation of NPP in terrestrial ecosystems. The ratio was, however, suggested to
vary with geographic location and environmental conditions. The number we used
in this study is within a reasonable range, but the number does not account for the
spatial variability of the ratio. Further study in the future will be needed on this
point. Another uncertainty may come from the nitrogen pool size. Because of data
limitation, we estimate nitrogen pools using the C:N ratios of soils and vegetation
in this study. Previous studies suggest that the C:N ratios may vary spatially (White
et al. 2000), but recent sensitivity analysis on TEM parameters suggests TEM is not
sensitive to the values of the initial C:N ratios as parameters (Tang and Zhuang
2009). Future effort should be made to provide more accurate spatially explicit pool
sizes for nitrogen in both vegetation and soils to better quantify regional carbon
dynamics.
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In addition, GPP and NPP are directly correlated to the photosynthesis rate; thus,
the errors in the GPP and NPP spatial data will result in a bias in the estimation
of Cmax (i.e., a higher GPP and NPP will have a higher Cmax). Moreover, the gap
between GPP and NPP is controlled by the parameter Kr, and thus an overesti-
mation of the gap will lead to an overestimation of Kr and vice versa. Here, we use
the spatial data from the MODIS GPP and NPP product, which were generated
with a combination of satellite observations and process-based models (Running
et al. 2004; Zhao et al. 2005). Although the satellite products were well validated
with eddy flux tower data (Heinsch et al. 2006; Plummer 2006; Turner et al. 2006;
Zhao et al. 2006), it might be more proper to use independent satellite-based
estimations in the future (e.g. Xiao et al. 2008; Xiao et al. 2010; Yang et al. 2007).
For future studies at a larger regional scale, several soil carbon inventory databases
are available (Fischer et al. 2008; U.S. Department of Agriculture 2011). However,
the spatial distribution of vegetation carbon storage for the conterminous United
States or the globe is not available. With the development of lidar and radar remote
sensing (Dubayah and Drake 2000; Kobayashi et al. 2000; Lefsky et al. 2009; Yu
et al. 2010), it is possible to gradually get a global estimation of vegetation carbon
pool sizes, which could be directly used as an input for the spatially explicit
parameterization of TEM for a better quantification of ecosystem dynamics at
regional and global scales.

Finally, the vegetation map we used in the spatially explicit calibration and the
base land-cover map from the MODIS carbon flux products are not exactly
matched with one another. The COLE data do not have a base land-cover map but
are based on the county level. The potential vegetation map used in this study from
Mellilo et al. (Mellilo et al. 1993) is at a 0.58 3 0.58 resolution. At the 1 km 3
1 km level, both of these maps are coarser than the MODIS products. Errors
therefore occur as a result of rescaling and matching these data onto the same
spatial scale and range. In addition, these maps are produced in different periods,
during which land-use and land-cover change may have happened. Therefore,
mismatch of the vegetation maps of these data could happen, and it may affect the
parameterization results and the model extrapolation results, mainly due to the
following two reasons: 1) mistake in a grid’s vegetation type will result in the usage
of improper parameters (e.g., VEGcn, Nav) during the spatially explicit calibration
and thus produce wrong calibrations and 2) because the MODIS GPP and NPP
products are based on MODIS land-cover products, the MODIS product may
provide improper GPP and NPP data for a grid cell because of the mismatch of the
MODIS land cover and the vegetation-cover type in this study. As discussed above,
the errors in GPP and NPP may bring uncertainty to the results. In the current study,
we rescaled all of the data into 0.58 3 0.58 grid cells because of the limit of
computing resources and the consideration of the coarse COLE data, but a future
study may conduct the spatially explicit parameterization at a higher spatial res-
olution and based on a unifying land-cover map to reduce the uncertainty.

5. Summary
Our study uses a spatially explicit parameterization method in our process-based

ecosystem model. The new parameterization method is able to more adequately
deal with the spatial heterogeneity of the ecosystems for the conterminous United
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States in estimating the carbon dynamics of forest ecosystems. The model pa-
rameters have high spatial variation in concert with highly heterogeneous soil and
vegetation carbon distributions. The spatially explicit parameters, therefore, lead to
distinct estimates of carbon dynamics of the conterminous United States forest
ecosystems compared with the results from a traditional parameterization method.
With the new parameterization method, the model estimates the net carbon ex-
changes between the conterminous United States forest ecosystem and the at-
mosphere to be 61% higher than the value estimated by the traditional method
during the period of 1948–2000. The large difference between the two regional
estimates indicates the importance of the spatially explicit parameters. This study
suggests that more spatially explicit vegetation and soil carbon, nitrogen, and flux
data are needed and should be used to improve future quantification of carbon
dynamics at regional and global scales.
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